The association of oxidative stress and antioxidant defense systems on glial tumors

Authors

  • Berzan Ekmen Lokman Hekim Üniversitesi, Sağlık Hizmetleri Meslek Yüksek Okulu, Tıbbi Laboratuvar Programı, Ankara, Türkiye https://orcid.org/0000-0001-6260-6196
  • Demet Kacaroglu Lokman Hekim Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji Ana Bilim Dalı, Ankara, Türkiye

DOI:

https://doi.org/10.5281/zenodo.7766207

Keywords:

Oxidative stress, Glioma, Antioxidants, Oxidative Stress Parameters

Abstract

Gliomas are the most common brain tumors in the adult population, and current adjuvant treatments are not effective. In order to develop a curative treatment for this group of tumors, it is very important to clarify the biological and biochemical mechanisms that cause the transformation of glial cells into tumors. In patients with brain tumors, there is a deficiency in the endogenous enzymatic and non-enzymatic antioxidant defense systems. Due to the disruption of this balance, the high oxidative stress that occurs in the central nervous system induces metabolic and genetic damage to healthy cells. Free radicals accumulated in the environment as a result of hypoxia accumulate in brain tumors, which leads to an increase in necrotic death. In this review, we examined the effects of the relationship between free radical production and antioxidant mechanism systems on glioma development and progression. In addition, we aimed to examine the effects of the disrupted redox equilibrium state on cancer-induced apoptosis with its molecular mechanisms. We believe that this review study will be useful for the development of new pharmacological therapeutics that will contribute to the regulation of the redox microenvironment in the treatment of glioma.

References

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015; 136(5):359-386.

Caruso G, Caffo M. Antisense oligonucleotides in the treatment of cerebral gliomas. review of concerning patents. Recent Pat CNS Drug Discov. 2014; 9(1): 2-12.

Seyithanoglu MH, Dundar TT, Kitiş S, Abdallah A, Özek E, Papaker MG. Yüksek gradlı glial tümörlerde yerleşim yeri ile rezidü oranlarının retrospektif analizi. Eur Arch Med Res. 2020;36(2):92-97.

Rinaldi M, Caffo M, Minutoli L, Marini H, Abbritti RV, Squadrito F, et al. Ros and brain gliomas: an overview of potential and innovative therapeutic strategies. Int J Mol Sci. 2016;17(6):984.

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2): 97-109.

Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, Il'yasova D, et.al. Brain tumor epidemiology: consensus from the brain tumor epidemiology consortium (btec). Cancer. 2008; 113(7):1953-1968.

Deng Z, Hu J, Liu S. Reactive oxygen, nitrogen, and sulfur species (ronss)-responsive polymersomes for triggered drug release. Macromol Rapid Commun. 2017;38(11):1-11.

Illán-Cabeza NA, García-García AR, Martínez-Martos JM, Ramírez-Expósito MJ, Peña-Ruiz T, Moreno-Carretero MN. A potential antitumor agent, (6-amino-1-methyl-5-nitrosouracilato-n3)- triphenylphosphine-gold(ı): structural studies and in vivo biological effects against experimental glioma. Eur J Med Chem. 2013; 64(Jun):260-272.

Wu CC, Bratton SB. Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxid Redox Signal. 2013;19(6):546-558.

Yang Y, Karakhanova S, Hartwig W, D'Haese JG, Philippov PP, Werner J, et al. Mitochondria and mitochondrial ros in cancer: novel targets for anticancer therapy. J Cell Physiol. 2016; 231(12):2570-2581.

Wu Q, Ni X. Ros-mediated DNA methylation pattern alterations in carcinogenesis. Curr Drug Targets. 2015;16(1):13-19.

Nair U, Bartsch H, Nair J. Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: a review of published adduct types and levels in humans. Free Radic Biol Med. 2007;43(8):1109-1120.

Mayas MJ, Carrera MP, Cobo MP, García MJ, Martínez-Martos JM.Oxidative stress parameters in rat with gliomas induced by transplacental N-ethyl-N-nitrosourea exposure. Eur J Neurol. 2012;19:772-772.

Zengin E, Atukeren P, Kokoglu E, Gumustas MK, Zengin U. Alterations in lipid peroxidation and antioxidant status in different types of intracranial tumors within their relative peritumoral tissues. Clin Neurol Neurosurg. 2009;111(4): 345-351.

Ramirez-Exposito MJ, Carrera MP, Mayas MD. Redox status in transplacental ethyl-nitrosourea-induced experimental glioma. 9th FENS Forum of Neuroscience, Milan, 5–9 Temmuz 2014.

Lian M, Zhang X, Wang H, Liu H, Chen W, Guo S. Increased 8-hydroxydeoxyguanosine in high-grade gliomas is associated with activation of autophagy. Int J Neurosci. 2014;124(12):926-934.

Qi X, Jha SK, Jha NK, Dewanjee S, Dey A, Deka R, et al. Antioxidants in brain tumors: current therapeutic significance and future prospects. Mol Cancer. 2022;21(204):1-32.

Guha P, Dey A, Sen R, Chatterjee M, Chattopadhyay S, Bandyopadhyay SK. Intracellular GSH depletion triggered mitochondrial bax translocation to accomplish resveratrol-induced apoptosis in the U937 cell line. J Pharmacol Exp Ther. 2011;336(1): 206-214.

Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA, et.al. Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev. 2013; 2013(May): 913-972.

Popov B, Gadjeva V, Valkanov P, Popova S, Tolekova A. Lipid peroxidation, superoxide dismutase and catalase activities in brain tumor tissues. Arch Physiol Biochem. 2003;111(5): 455-459.

Jeong CH, Joo SH. Downregulation of reactive oxygen species in apoptosis. J Cancer Prev. 2016; 21(1):13-20.

Yilmaz N, Dulger H, Kiymaz N, Yilmaz C, Bayram I, Ragip B. ve ark. Lipid peroxidation in patients with brain tumor. Int J Neurosci. 2006;116(8):937-943.

Smith PS, Zhao W, Spitz DR. Inhibiting catalase activity sensitizes 36B10 rat glioma cells to oxidative stress. Free Radic Biol Med. 2007;42(6):787-797.

) Tanriverdi T, Hanimoglu H, Kacira T, Sanus GZ, Kemerdere R, Atukeren P ve ark. Glutathione peroxidase, glutathione reductase and protein oxidation in patients with glioblastoma multiforme and transitional meningioma. J Cancer Res Clin Oncol. 2007;133(9):627-633.

Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME. Oxidative stress and cancer: an overview. Ageing Res Rev. 2013;12(1):376-390.

Hung YC, Pan TL, Hu WL. Roles of reactive oxygen species in anticancer therapy with salvia miltiorrhiza bunge. Oxid Med Cell Longev. 2016; (2016):1-10.

Orlicka-Płocka M, Fedoruk-Wyszomirska A, Gurda-Woźna D, Pawelczak P, Krawczyk P, Giel-Pietraszuk M ve ark. Implications of oxidative stress in glioblastoma multiforme following treatment with purine derivatives. Antioxidants. 2021;10(6):1-34.

Liu S, Dong L, Shi W, Zheng Z, Liu Z, Meng L, et al. Potential targets and treatments affect oxidative stress in gliomas: an overview of molecular mechanisms. Front Pharmacol. 2022; 22(13): 1-16.

Salazar-Ramiro A, Ramírez-Ortega D, Pérez de la Cruz V, Hérnandez-Pedro NY, González-Esquivel DF, Sotelo J, et.al. Role of redox status in development of glioblastoma. Front Immunol. 2016; 7(Apr):156.

Olivier C, Oliver L, Lalier L, Vallette FM. Drug Resistance in glioblastoma: the two faces of oxidative stress. Front Mol Biosci. 2021;27(7):620-677.

Cheng X, Geng F, Pan M, Wu X, Zhong Y, Wang C, et al. Targeting DGAT1 ameliorates glioblastoma by increasing fat catabolism and oxidative stress. Cell Metab. 2020; 32(2):229-242.

Liang J, Cao R, Wang X, Zhang Y, Wang P, Gao H, et al. Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2. Cell Res. 2017;27(3):329-351.

Chang M, Qiao L, Li B, Wang J, Zhang G, Shi W, et al. Suppression of SIRT6 by miR-33a facilitates tumor growth of glioma through apoptosis and oxidative stress resistance. Oncol Rep. 2017;38(2):1251-1258.

Huang H, Zhang S, Li Y, Liu Z, Mi L, Cai Y, et al. Suppression of mitochondrial ros by prohibitin drives glioblastoma progression and therapeutic resistance. Nat Commun. 2021;12(1):3720.

Wu L, Wang F, Xu J, Chen Z. PTPN2 induced by inflammatory response and oxidative stress contributed to glioma progression. J Cell Biochem. 2019;120(11):19044-19051.

Sharanek A, Burban A, Laaper M, Heckel E, Joyal JS, Soleimani VD, et al. OSMR controls glioma stem cell respiration and confers resistance of glioblastoma to ionizing radiation. Nat Commun. 2020;11(1): 4116.

Feng J, Yan PF, Zhao HY, Zhang FC, Zhao WH, Feng M. SIRT6 suppresses glioma cell growth via induction of apoptosis, inhibition of oxidative stress and suppression of JAK2/STAT3 signaling pathway activation. Oncol Rep. 2016;35(3):1395-1402.

Lei Q, Liu X, Fu H, Sun Y, Wang L, Xu G, et al. miR-101 reverses hypomethylation of the PRDM16 promoter to disrupt mitochondrial function in astrocytoma cells. Oncotarget. 2016;7(4):5007-5022.

Yang L, Mu Y, Cui H, Liang Y, Su X. miR-9-3p augments apoptosis induced by H2O2 through down regulation of Herpud1 in glioma. PLoS One. 2017; 12(4): 1-14.

Chen D, Fan Z, Rauh M, Buchfelder M, Eyupoglu IY, Savaskan N. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene.2017;36(40):5593-5608.

Krylova NG, Drobysh MS, Semenkova GN, Kulahava TA, Pinchuk SV, Shadyro OI. Cytotoxic and antiproliferative effects of thymoquinone on rat C6 glioma cells depend on oxidative stress. Mol Cell Biochem. 2019;462(1-2):195-206.

Zhou H, Han L, Wang H, Wei J, Guo Z, Li Z. chidamide ınhibits glioma cells by ıncreasing oxidative stress via the miRNA-338-5p regulation of hedgehog signaling. Oxid Med Cell Longev. 2020; 11(2020):1-17.

Mudassar F, Shen H, O'Neill G, Hau E. Targeting tumor hypoxia and mitochondrial metabolism with anti-parasitic drugs to improve radiation response in high-grade gliomas. J Exp Clin Cancer Res. 2020;39(1):208.

Tavana E, Mollazadeh H, Mohtashami E, Modaresi SMS, Hosseini A, Sabri H, et al. Quercetin: A promising phytochemical for the treatment of glioblastoma multiforme. Biofactors. 2020;46(3):356-366.

Ozyerli-Goknar E, Sur-Erdem I, Seker F, Cingöz A, Kayabolen A, Kahya-Yesil Z ve ark. The fungal metabolite chaetocin is a sensitizer for pro-apoptotic therapies in glioblastoma. Cell Death Dis. 2019; 10(12):894.

Liu X, Zhao P, Wang X, Wang L, Zhu Y, Song Y, et al. Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J Exp Clin Cancer Res. 2019;38(1):184.

Huangfu M, Wei R, Wang J, Qin J, Yu D, Guan X, et al. Osthole induces necroptosis via ros overproduction in glioma cells. FEBS Open Bio. 2021;11(2):456-467.

Lu B, Gong X, Wang ZQ, Ding Y, Wang C, Luo TF, et al. Shikonin induces glioma cell necroptosis in vitro by ROS overproduction and promoting RIP1/RIP3 necrosome formation. Acta Pharmacol Sin. 2017; 38(11):1543-1553.

Liu W, Chai Y, Hu L, Wang J, Pan X, Yuan H, et al. Polyphyllin vı ınduces apoptosis and autophagy via reactive oxygen species mediated jnk and p38 activation in glioma. Onco Targets Ther. 2020;13(13):2275-2288.

Wang C, He C, Lu S, Wang X, Wang L, Liang S, et al. Autophagy activated by silibinin contributes to glioma cell death via induction of oxidative stress-mediated BNIP3-dependent nuclear translocation of AIF. Cell Death Dis. 2020;11(8):630.

McKelvey KJ, Wilson EB, Short S, Melcher AA, Biggs M, Diakos CI, et al. Glycolysis and fatty acid oxidation inhibition improves survival in glioblastoma. Front Oncol. 2021;11(Mar):1-18.

Lei K, Gu X, Alvarado AG, Du Y, Luo S, Ahn EH, et al. Discovery of a dual inhibitor of NQO1 and GSTP1 for treating glioblastoma. J Hematol Oncol. 2020;13(1):1-21.

Published

2023-03-24

How to Cite

Ekmen, B., & Kacaroglu, D. (2023). The association of oxidative stress and antioxidant defense systems on glial tumors . Journal of Social and Analytical Health, 3(2), 177–185. https://doi.org/10.5281/zenodo.7766207